AD 1.5 AERODROME OPERATIONS

1 INTRODUCTION

1.1 General

1.1.1 This section details procedures for operations on and in the vicinity of aerodromes.

1.1.2 The layout of the circuit is depicted in Figure AD 1.5-1A.

1.1.3 The tracks to be flown when joining are depicted in Figures AD 1.5-1B and AD 1.5-1C.

1.1.4 Both the traffic and non-traffic sides should be identified to avoid descending into aircraft already in the circuit.

Figure AD 1.5-1A
Aerodrome Traffic Circuit
Figure AD 1.5-1B
Direct-joining the Circuit

Figure AD 1.5-1C
Standard Overhead Join

Effective: 28 MAY 15
© Civil Aviation Authority
2 CIRCUIT JOINING PROCEDURES

2.1 Joining Procedures

2.1.1 The pilot of an aircraft intending to land at an unattended aerodrome, or one where aerodrome flight information service is being provided, may join the circuit via a standard overhead circuit joining procedure as outlined in Figure AD 1.5-1C, or direct into downwind, base leg, or long final as outlined in Figure AD 1.5-1B provided that:

(a) joining intentions are advised to aerodrome traffic or AFIS if the aircraft is RTF equipped; and

(b) the runway-in-use and aerodrome traffic are properly ascertained (be aware that some aerodromes have alternate circuit patterns for approved aviation activity); and

(c) when making a straight-in approach, or joining crosswind, downwind or base leg, the aircraft is sequenced without causing conflict in such a way as to give priority to aircraft already established in the circuit or established in the standard overhead circuit joining pattern; and

(d) when entering or flying within the circuit, all turns are made in the direction appropriate to the runway-in-use.

3 RUNWAY SELECTION

3.1 General

3.1.1 Where aerodrome control service is being provided, the designated runway is that best favouring the wind direction and the take-off length requirements of the majority of the traffic. Pilots of all RTF equipped aircraft are informed of the runway-in-use by the ATS unit.

3.1.2 AFIS provides information enabling the pilot to select the most suitable runway for use. The term “preferred runway” is used to indicate the most suitable runway for use at a particular time, taking into account wind and other relevant factors such as the traffic pattern and the runway used by other aircraft, with the intention of establishing and maintaining an orderly flow of aerodrome traffic.

3.1.3 At unattended aerodromes pilots are to conform with or avoid the aerodrome traffic circuit formed by other aircraft.
3.1.4 At unattended aerodromes when the use of simultaneous circuits is operationally required, the aircraft that forms an aerodrome traffic circuit first has priority, and other aircraft (including larger and higher performance aircraft) must conform with this pattern or avoid it in accordance with CAR 91.223(a)(2). However, when it is not clear which circuit pattern was formed first, pilots should consider that the runway with the least crosswind component has priority. In most cases, it would be expected that pilots conducting circuits on crosswind runways would manage their flights so as to avoid conflict with other aircraft under these circumstances. If it is safe to do so, pilots of smaller aircraft are encouraged to allow large or higher performance aircraft to operate in the circuit necessary for this type of operation in the interests of fuel conservation, environmental impact and the lesser manoeuvring capability of these aircraft.

4 **DEPARTURE FROM THE CIRCUIT**

4.1 **Departure**

4.1.1 The pilot of a VFR or IFR aircraft departing the aerodrome traffic circuit must make all turns in the direction of the traffic circuit, unless:

(a) otherwise instructed by ATC in controlled airspace; or

(b) a turn in the opposite direction has been prescribed as part of an IFR departure procedure; or

(c) the aircraft is laterally clear of the circuit area or is a minimum 1500 ft above the aerodrome level.

5 **STANDARD OVERHEAD CIRCUIT JOINING PROCEDURE**

5.1 **Standard Overhead Join Procedure**

5.1.1 The standard overhead joining procedure, which is depicted in Figure AD 1.5-1C, should be followed at unattended aerodromes (where no aerodrome control or AFIS is provided) and at other aerodromes when a pilot is unfamiliar with the aerodrome or is uncertain of circuit traffic. The standard overhead joining procedure is a means of compliance with CAR 91.223(a)(2), which requires a pilot to conform with or avoid the aerodrome traffic circuit formed by other aircraft. This procedure is used to determine the runway-in-use and the position of traffic in order to sequence safely. It does not presume a right of way over existing circuit activity.
5.1.2 The following procedures should be followed by pilots:

(a) If the aircraft is RTF equipped, advise aerodrome traffic of joining intentions.

(b) Approach the aerodrome by descending or climbing to 1500 ft or above aerodrome elevation. If a circuit height other than 1000 ft is specified on the aerodrome chart, join at not less than 500 ft above circuit height, or if applicable, the specified joining altitude.

(c) Pass over the aerodrome (keeping it on your left) in order to observe wind, circuit traffic and any ground signals displayed in order to establish the runway-in-use and sequence safely; if these cannot be fully ascertained, continue (wings level) to a point beyond the circuit area (approx. 2 NM) and turn left to return to the aerodrome at or above the joining height as specified in (b) to reassess circuit direction.

(d) Once the circuit direction is established, make all subsequent turns in the direction of the traffic circuit.

(e) Once the conditions in (c) are ascertained, cross to the non-traffic side, and descend to circuit height.

(f) Turn 90° across wind and pass sufficiently close to the upwind end of the runway to ensure that aircraft taking off can pass safely underneath.

(g) Turn to join the downwind leg of the traffic circuit at a point that ensures adequate spacing with any aircraft in the circuit ahead or behind.

5.1.3 An ATC clearance is required prior to carrying out this procedure at controlled aerodromes.
6 SURFACE MOVEMENT CONTROL

6.1 General

6.1.1 Where a controlled aerodrome has a separate surface movement control, unless different aerodrome-specific procedures are published in AD 2, the procedures in 6.2.1 and 6.3.1 must be followed.

6.1.2 Pilots must on all occasions notify ATC of the nature of their intended movement before taxiing on the manoeuvring area.

6.2 Departing Aircraft

6.2.1 The pilot of a departing aircraft must call on the frequency used for control of surface movements, and:

(a) advise ready to start (IFR only) with requested altitude and alternate;
(b) request taxi clearance (report receipt of ATIS if appropriate);
(c) obtain IFR or CVFR clearance; and
(d) unless otherwise instructed, call aerodrome control on the appropriate frequency when approaching the holding position for take-off on the runway-in-use.

6.3 Arriving Aircraft

6.3.1 The pilot of an arriving aircraft must remain on the aerodrome control frequency until clear of the runway-in-use; then, unless otherwise instructed, contact surface movement control on the appropriate frequency for taxi instructions.
7 AERODROME CONTROL CLEARANCES

7.1 General

7.1.1 At controlled aerodromes, unless under surface movement control, the pilot is required to obtain an aerodrome control clearance prior to:

(a) taxiing on any portion of the aerodrome manoeuvring area; or

(b) landing at or taking off from any runway or heliport at that aerodrome.

7.1.2 Figure AD 1.5-2 shows the positions where pilots of aircraft at controlled aerodromes normally receive aerodrome control clearances, either by radio or light signals.

Figure AD 1.5-2
Positions for Clearances at Controlled Aerodromes
7.2 Taxi Instructions

7.2.1 Taxi instructions issued by ATC will always contain a clearance limit, which is the point at which the aircraft must stop until further permission to proceed is given.

7.2.2 The pilot of a departing aircraft must state the location of the aircraft when requesting:

(a) engine start;
(b) push back; or
(c) clearance to taxi.

7.2.3 If wanting to operate off a non-duty runway, the pilot of an aircraft operating under:

(a) IFR must make this request prior to starting engines; and
(b) VFR must include this in the request for taxi instructions.

7.2.4 When a pilot requires a reduced length for take-off or a backtrack from a runway entry point, this request, along with any other intentions that may be significant to ATC, must be included in the request for taxi clearance.

7.2.5 Except where normal operations for aircraft type will necessitate a backtrack, the pilot of an arriving aircraft wishing to backtrack on the runway-in-use after landing should make that request to TWR while on final approach.

7.2.6 After landing, pilots must advise intended location on the aerodrome, and obtain a taxi clearance.

7.3 Taxi Instructions to Cross a Runway

7.3.1 A taxi clearance, including clearance to backtrack, which contains a limit beyond a runway will contain an explicit clearance to cross that runway or an instruction to hold short of that runway. This will include unlit runways at night and runways that are promulgated as closed or not available.

7.3.2 A clearance to cross must be requested if one has not been given.
8 **SPEED REQUIREMENTS IN THE AERODROME TRAFFIC CIRCUIT**

8.1 **Speed Requirements**

8.1.1 ATC may at any time, for traffic management reasons, require the pilot of an aircraft to fly at a specific speed or within a range of speeds. Pilots are to advise ATC if unable to comply with speed requirements, and advise pilot preferred speed.

8.1.2 Speed requirements for VFR aircraft in the aerodrome traffic circuit may be published on the aerodrome chart.

8.1.3 Speed requirements for IFR aircraft on final of an instrument approach are published on the arrival pages or STAR charts in AD 2, or on the aerodrome chart.

9 **CIRCUIT PROCEDURES: CONTROLLED AERODROMES**

9.1 **Circuit Procedures**

9.1.1 The pilot of an aircraft intending to land at a controlled aerodrome (i.e. where air traffic control is being provided) must join the circuit in accordance with ATC instructions:

(a) by descending to circuit height prior to joining and making either a straight-in approach to the runway-in-use, or by joining on downwind or base leg; or

(b) as outlined in the standard overhead circuit joining procedures; or

(c) as outlined in the buzz and break procedure.

9.1.2 Pilots must make a position report in the downwind position, and at other positions within the circuit as requested by ATC.

9.1.3 Pilots must at all times maintain sequence and follow the aircraft ahead at a safe landing interval, unless instructed otherwise by ATC.

9.2 **Circuit Height**

9.2.1 At controlled aerodromes, the circuit height to be used when ATC is on watch is inserted on the aerodrome chart.
9.3 Go-Around

9.3.1 If the runway is not available for landing, or to avert an unsafe situation, or to ensure ATC separation, an aircraft pilot will be instructed to or may elect to go around.

9.3.2 Unless instructions are issued by ATC to the contrary, the pilot of an aircraft on an instrument approach must carry out the missed approach procedure, and the pilot of an aircraft operating VFR, or an IFR aircraft on a visual approach must continue in the circuit. The exception to this requirement is that at all times a CAT D/D_L aircraft that is IFR on a visual approach is to carry out the missed approach for the nominated instrument approach unless the crew specifically request otherwise.

(a) Except at Christchurch — see NZCH AD 2-31.2.

9.3.3 Refer also to Protection of the Missed Approach in ENR 1.5.

9.4 Simulated Emergency and Training Manoeuvres

9.4.1 Where pilots wish to carry out simulated engine failure during or after take-off pilots must advise ATC of their intentions and obtain ATC approval before each manoeuvre. Pilots must report when the manoeuvre is complete.

9.4.2 Where pilots wish to carry out simulated emergency and training manoeuvres such as rejected take-off, helicopter autorotation, glide approaches, low approach and go around, pilots must advise ATC of their intentions and obtain ATC approval before each manoeuvre.

9.4.3 In all cases ATC may deny a request where other traffic may be unduly affected.

9.5 ACAS Procedures

9.5.1 When operating within, or entering a controlled aerodrome traffic circuit, pilots should operate an ACAS (such as TCAS) on Traffic Advisory (TA) mode. This is to avoid unnecessary Resolution Advisory (RA) manoeuvres against controlled air traffic operating by reference to visual, composite visual, vertical or runway separation standards that are not considered by an ACAS.
10 BUZZ AND BREAK PROCEDURE

10.1 Buzz and Break

10.1.1 At controlled aerodromes, pilots who have received training in the manoeuvre may, on request, be cleared to join the traffic circuit via an initials point for buzz and break, providing they comply with the following procedures that are illustrated in Figure AD 1.5-3:

(a) The initials point is four miles from the runway threshold, 200 m on the non-traffic side of the runway extended centreline.

(b) An “initials” call must be made when approaching this point specifying joining from left or right of the centreline.

(c) From initials, the aircraft must be flown parallel to the extended centreline, 200 m on the non-traffic side, to a point where a safe and expeditious turn into the normal traffic circuit can be made. The pilot is responsible for sequencing into the traffic pattern as instructed by ATC.

(d) The break must not be made until the pilot has sighted all relevant traffic.

(e) The turn onto the downwind position may be either level at circuit altitude, or climbing up to circuit altitude.

(f) The break must be commenced not below 500 ft AGL and not above 250 kt IAS. The aircraft will be at normal circuit speed downwind. Formations of aircraft may join simultaneously via this method. The formation leader is responsible for sequencing the formation into the circuit traffic pattern as instructed by ATC.

Figure AD 1.5-3
Buzz and Break Procedures
11 HELICOPTER OPERATIONS AT CONTROLLED AERODROMES

11.1 General

11.1.1 Due to the flexibility of helicopter operations, it is not always necessary for helicopter pilots to adhere to the standard fixed-wing circuit procedures at controlled aerodromes. As well, subject to aerodrome operator approval, helicopter pilots may be permitted to land and take off from areas of the aerodrome other than the designated runways.

11.1.2 Providing safety is not jeopardised, helicopters will be sequenced into and out of the circuit by the most expeditious means, and standard runway separation standards may not apply.

11.1.3 Landing and take-off clearances are required for operation on the aerodrome; however, where a helicopter is operated to/from that part of the aerodrome outside the designated manoeuvring area, clearances will be appended as follows:

“HYH TAKE OFF/LAND AT YOUR DISCRETION”
12 MINIMUM RUNWAY OCCUPANCY — CONTROLLED AERODROMES

12.1 General

12.1.1 At controlled aerodromes, runway occupancy time is one of the main factors that affects the efficiency of the runway-in-use. Initiatives by ATC to improve runway utilisation through the application of new separation standards, both on the runway and in the air, and the issuing of conditional clearances, rely on pilot cooperation to have maximum effect.

12.1.2 As traffic demand continues to grow it is essential that maximum capacity be obtained from a runway. Mixed mode (jet versus turbo-prop versus piston versus light aircraft) can make operations in the vicinity of aerodromes very complicated.

12.1.3 The guidance material in this section is provided so that pilots are aware of factors that can assist in ensuring the best utilisation of a runway. This guidance material does not supersede published ATC and pilot procedures. Pilots should:

(a) be aware of wake turbulence requirements and their effect on aircraft operations;

(b) be aware of the manoeuvring area layout, particularly the taxiway and runway holding position locations;

(c) ensure a full briefing of aerodrome procedures, as published in AD 2, is done prior to landing or taxiing;

(d) plan ahead, be prepared for the controller’s instructions, and carry out these instructions without delay;

(e) keep ATC informed of preferences and make any requests to ATC clear and concise;

(f) listen to instructions to other aircraft in the immediate vicinity, because when it is busy it is important that pilots have situational awareness of other aircraft in proximity to the aerodrome;

(g) where crossing runways, or non-intersecting runways when overlapping flight paths are in use, be aware of the effect operations on these runways has on them;

(h) if unable to comply with ATC instructions, tell the controller without delay; and

(i) always remember that every second counts.
12.2 Departing Aircraft

12.2.1 The pilot of a departing aircraft must:

(a) not request a clearance to enter the runway unless:
 (i) ready to take off; or
 (ii) cleared by ATC to line up for pre-take off checks;

(b) if having received a conditional clearance to line up behind a departing or landing aircraft, ensure correct identification of the aircraft and enter the runway immediately after the other aircraft has passed (Note: Conditional clearances must be read back in full to indicate a clear understanding that the conditions are understood);

(c) when cleared for “IMMEDIATE TAKE-OFF”, if on the taxiway, enter the runway and take off without stopping.

12.3 Arriving Aircraft

12.3.1 The pilot of an arriving aircraft must:

(a) identify the aircraft to follow as quickly as possible;

(b) pre-select a runway exit point that will achieve minimum practical runway occupancy;

(c) after touchdown, adjust braking to exit the runway at the pre-selected runway exit point without delay; and

(d) unless advised otherwise by ATC, comply without acknowledgement to an ATC request to “expedite vacating” or “take first/next left/right”.

Effective: 28 MAY 15
13 **Runway Separation Standards Applied by ATC**

13.1 **General**

13.1.1 The runway separation standards applied at controlled aerodromes by ATC between aircraft taking off, between aircraft landing, between aircraft landing and taking off, and between aircraft on touch-and-go or stop-and-go landing are outlined in this section.

13.1.2 These standards may be increased if IFR aircraft are involved, or if wake turbulence is a factor, but will not apply to aircraft in formation with respect to other aircraft in the same formation.

13.1.3 Provided safety is not jeopardised, application of runway separation to helicopters and non-powered aircraft may also be waived or varied to take into account the particular characteristics of these aircraft.

13.1.4 Wake turbulence separations are detailed in AD 1.6, para 6.1.2. ATC, in applying runway separations, will make allowance for:

(a) differences in aircraft performance;
(b) the possibility of a landing aircraft not completing a landing;
(c) light or tailwind conditions; and
(d) braking action which may be adversely affected by runway contaminants.

13.1.5 Some separation standards are applicable only during daylight hours, i.e. between beginning of MCT and end of ECT, and when the visibility is 5 km or greater.

13.2 **Qualified Take-off and Landing Clearances**

13.2.1 A qualified take-off clearance may be issued to the pilot of a departing aircraft when the runway separation standard versus a preceding landing or departing aircraft will exist at the time the departing aircraft commences take-off.

13.2.2 Pilots should not commence take-off if they consider that runway separation criteria may not be met.

13.2.3 A qualified landing clearance may be issued to the pilot of an aircraft on final approach when the runway separation standard versus a preceding landing or departing aircraft will exist at the time the approaching aircraft crosses the threshold.
13.2.4 Pilots have a responsibility to “go around” if they consider that runway separation criteria may not be met.

13.2.5 Examples of qualified take-off/landing clearances are:

(a) “BA46 VACATING RUNWAY LEFT, RUNWAY [or GRASS or SEAL as appropriate] (number) CLEARED FOR TAKE-OFF”.

(b) “CHEROKEE DEPARTING, RUNWAY [or GRASS or SEAL as appropriate] (number) CLEARED TO LAND”.

13.3 Conditional Line Up Clearances

13.3.1 Conditional line up clearances may be issued to departing aircraft on the use of an active runway. They will not be used unless the vehicle or aircraft concerned is seen by both the controller and the pilot, and the vehicle or aircraft causing the condition is the first to pass in front of the departing aircraft.

13.3.2 Conditional line up clearances require the pilot of the aircraft receiving the clearance to correctly identify the aircraft or vehicle causing the condition, and not accept the clearance unless this is achieved.

13.3.3 In all cases, a conditional line up clearance will be given in the following order and consist of:

(a) identification;
(b) the condition;
(c) the clearance; and
(d) a brief reiteration of the condition.

13.3.4 Examples of conditional line up clearances are:

(a) “MOUNT COOK 941, BEHIND BOEING 737 ON SHORT FINAL, LINE UP BEHIND”.

(b) “QANTAS 357, AFTER DEPARTING AIRBUS, LINE UP BEHIND”.

13.3.5 Conditional line up clearances are to be read back in full.
13.4 Multiple Line Up Clearances

13.4.1 ATC may issue line up instructions to more than one aircraft at different points on the same runway. They will not be used unless the preceding aircraft concerned is seen by both the controller and the pilot of the succeeding aircraft.

13.4.2 Multiple line up clearances require the pilot of the aircraft receiving the clearance to correctly identify the preceding aircraft and not accept the clearance unless this is achieved.

13.4.3 ATC will advise the pilot of each aircraft involved about the other aircraft lined up or lining up, and the order of departure.

13.4.4 In all cases, a multiple line up clearance will be given in the following order and consist of:

(a) identification; and
(b) line up clearance: and
(c) runway; and
(d) runway entry point; and
(e) departure order number; and
(f) traffic information about other aircraft.

13.4.5 Examples of multiple line up clearances are:

(a) “ANZ123 LINE UP RUNWAY 23L AT ALFA FOUR, NUMBER ONE FOR DEPARTURE AHEAD OF QANTAS B737 LINING UP AT ALFA ONE”.

(b) “QFA357, LINE UP AND WAIT RUNWAY 23L AT ALFA ONE, NUMBER TWO FOR DEPARTURE BEHIND AIR NEW ZEALAND A320 AT ALFA FOUR”.

13.4.6 Multiple line up clearances are to be read back in full.
13.5 Single Runway — Take-off

Figure AD 1.5-4
Single Runway — Take-off

13.5.1 In the situation represented in Figure AD 1.5-4, the pilot of aircraft B may be cleared for take-off when the following conditions exist:

(a) a preceding landing aircraft is clear of the runway; or
(b) a preceding departing aircraft A is airborne and has crossed the end of the runway-in-use; or
(c) a preceding departing aircraft A is airborne and has started a turn; or
(d) if the runway is longer than 1800 metres, aircraft A is airborne, and the controller can readily determine that aircraft A has reached a point at least 1800 metres ahead of aircraft B; or
(e) during daylight only:
 (i) where both aircraft have a MCTOW of 7000 kg or less, aircraft A is airborne, and the controller can readily determine that aircraft A has reached a point at least 1000 metres ahead of aircraft B; or
 (ii) where both aircraft have a MCTOW of 2300 kg or less, aircraft A is airborne, and the controller can readily determine that aircraft A has reached a point at least 600 metres ahead of aircraft B; or
(f) a preceding aircraft A is airborne and aircraft B is a microlight.
13.6 Single Runway — Landing

Figure AD 1.5-5
Single Runway — Landing

13.6.1 In the situation represented in Figure AD 1.5-5, the pilot of aircraft B may be permitted to cross the runway threshold to land when the preceding landing aircraft A is clear of the runway.

Figure AD 1.5-6
Single Runway — Landing

13.6.2 In the situation represented in Figure AD 1.5-6, during daylight only, a landing clearance may be issued to the pilot of aircraft B to cross the runway threshold to land, provided:

(a) aircraft A has an MCTOW of 7000 kg or greater; and

(b) aircraft A is at least 2400 metres from the landing threshold and will vacate the runway without stopping or backtracking.
13.6.3 In the situation represented in Figure AD 1.5-7, during daylight only, a landing clearance may be issued to the pilot of aircraft B to cross the runway threshold to land, provided:

(a) both aircraft have an MCTOW of 7000 kg or less; and

(b) aircraft A has commenced a turn to vacate the runway without stopping or backtracking.

13.6.4 In the situation represented in Figure AD 1.5-8, during daylight only, a landing clearance may be issued to the pilot of aircraft B to cross the runway threshold to land, provided:

(a) both aircraft have an MCTOW of 2300 kg or less; and

(b) aircraft A is occupying the runway and will vacate the runway without backtracking; and

(c) aircraft A has reached a point ahead of aircraft B where it is considered by the controller that there is no risk of collision.
13.7 Single Runway — Landing Versus Take-off

Figure AD 1.5-9
Single Runway — Landing Versus Take-off

13.7.1 In the situation represented in Figure AD 1.5-9, the pilot of landing aircraft B may be permitted to cross the runway threshold to land once the departing aircraft A has crossed the other end of the runway-in-use or has started a turn.

Figure AD 1.5-10
Single Runway — Landing Versus Take-off

13.7.2 In the situation represented in Figure AD 1.5-10, during daylight only, the pilot of landing aircraft B may be permitted to cross the runway threshold to land prior to aircraft A crossing the other end of the runway-in-use, or commencing a turn, provided aircraft A is airborne and past the point on the runway at which aircraft B could be expected to have completed a normal landing roll.
13.7.3 In the situation represented in Figure AD 1.5-11, during daylight only, the pilot of landing aircraft B may be permitted to cross the runway threshold to land prior to aircraft A crossing the other end of the runway-in-use, or commencing a turn, provided:

(a) aircraft A is airborne and at least 2000 metres from the landing threshold; or

(b) aircraft A is not yet airborne, is accelerating, and is at least 2400 metres from the landing threshold.

13.7.4 In the situation represented in Figure AD 1.5-12, during daylight only, the pilot of landing aircraft B may be permitted to cross the runway threshold to land prior to departing aircraft A becoming airborne, provided:

(a) both aircraft have a MCTOW of 2300 kg or less; and

(b) the departing aircraft A is accelerating and past the point on the runway at which arriving aircraft B could be expected to have completed a normal landing roll, that point being a minimum of 600 metres from the landing threshold.

13.7.5 Pertinent traffic information that will enable the following aircraft to sight the preceding aircraft will be issued and it is considered by the aerodrome controller that there is no risk of collision.
13.8 **Single Runway — Touch-and-Go/Stop-and-Go Landing**

13.8.1 The pilot of an arriving aircraft may be permitted to cross the runway threshold on a touch-and-go or stop-and-go landing when both the relevant landing and take-off separation minima exist.

13.9 **Parallel Runway Operations**

13.9.1 Parallel same direction runway operations may be approved during daylight only when:

(a) the visibility is 5 km or more; and

(b) the pilots of both aircraft are in two-way radio communication with aerodrome control; and

(c) pertinent traffic information is issued; and

(d) the inside runway edges are clearly defined; and

(e) both aircraft have an MCTOW of 2300 kg or less and the inside edges of the two runways are not less than 60 metres apart; or

(f) both aircraft have an MCTOW of 5700 kg or less and the inside edges of the two runways are not less than 90 metres apart; or

(g) no weight restriction and the inside edges of the two runways are not less than 165 metres apart.
13.10 Crossing Runways — Take-off

Figure AD 1.5-13
Crossing Runways — Take-off

13.10.1 In the situation represented in Figure AD 1.5-13, the pilot of aircraft A may be cleared for take-off when;

(a) a preceding aircraft B taking off on a crossing runway has crossed and is clear of the intersection; or

(b) a preceding aircraft C landing on a crossing runway has crossed and is clear of the intersection; or

(c) a preceding aircraft D which has landed on a crossing runway has stopped short of and is clear of the intersection.
13.11 Crossing Runways — Landing

Figure AD 1.5-14
Crossing Runways — Landing

![Diagram of crossing runways with aircraft A, B, C, and D]

13.11.1 The pilot of an arriving aircraft A shall not be permitted to cross the threshold of a runway to land until:

(a) a preceding aircraft B taking off on a crossing runway has crossed and is clear of the intersection; or

(b) a preceding aircraft C landing on a crossing runway has crossed and is clear of the intersection; or

(c) a preceding aircraft D which has landed on a crossing runway has stopped short of and is clear of the intersection.

13.12 Non-Intersecting Runways with Crossing Flight Paths

13.12.1 Operations onto non-intersecting runways with crossing flight paths are considered by ATC, for the purpose of providing runway separation and wake turbulence separation, to be operations onto crossing runways.
14 **RUNWAY DESIGNATOR PHRASEOLOGY USED BY ATC**

14.1 **General**

14.1.1 At controlled aerodromes the phraseology “RUNWAY (number)” will be used with the exception that where there are two parallel runways with different surfaces (paved and unpaved), and the runway designators are the same (e.g. both are designated 18/36):

(a) the phraseology “GRASS (number)” will be used to describe the unpaved or partially paved runway, and

(b) the phraseology “SEAL (number)” will be used to describe the paved runway if the aircraft in question is capable of landing on either parallel runway, or

(c) the phraseology “RUNWAY (number)” will be used to describe the paved runway if the aircraft in question is not capable of landing on the unpaved parallel runway.