ENR 1.15 EMERGENCY PROCEDURES

1 DISTRESS

1.1 Definition

1.1.1 Distress is defined as a condition of being threatened by serious and/or imminent danger and requiring immediate assistance.

1.2 Transmission of MAYDAY Message

1.2.1 The pilot of an aircraft in distress must transmit on the air-ground frequency in use at the time of the distress the distress signal MAYDAY (preferably spoken three times), followed by the distress message.

1.2.2 If on an unattended frequency and it is considered that better assistance can be provided by transferring to another frequency the pilot should do so, after broadcasting this intention on the original frequency.

1.3 Content of MAYDAY Message

1.3.1 The distress message should consist of as many of the following elements spoken distinctly and if possible, in the following order:

(a) name of station addressed (time and circumstances permitting);

(b) identification of the aircraft;

(c) nature of the distress condition;

(d) intention of the pilot; and

(e) present position, level (FL or altitude), and heading.

1.3.2 The transmission of an accurate aircraft position may be critical to any subsequent search and/or rescue action.

1.3.3 In addition the pilot should switch the transponder to the emergency code 7700, or emergency mode in the case of ADS-B equipped aircraft; and

(a) activate the ELT;

(b) if the emergency situation is recovered, turn the ELT off and advise ATC or RCCNZ as soon as possible;

(c) if the ELT is turned off and ATC or RCCNZ are not advised as soon as possible, it will be assumed that the aircraft has crashed and search planning will have commenced.

Effective: 6 FEB 14
2 URGENCY

2.1 Definition
2.1.1 Urgency is defined as a condition concerning the safety of an aircraft, or of some person on board or within sight, but which does not require immediate assistance.

2.2 Transmission of PAN PAN Message
2.2.1 The pilot of an aircraft reporting an urgency condition must transmit on the air-ground frequency in use at the time the urgency signal PAN PAN (preferably spoken three times), followed by the urgency message.

2.3 Content of PAN PAN Message
2.3.1 The urgency message should consist of as many of the following elements spoken distinctly and if possible, in the following order:

(a) name of station addressed;
(b) identification of the aircraft;
(c) nature of the urgency condition;
(d) intention of the pilot;
(e) present position, level (FL or altitude), and heading; and
(f) any other useful information.
3 **COMMUNICATIONS FAILURE — AUCKLAND OCEANIC FIR**

3.1 **Procedure**

3.1.1 In the event of a total loss of communication, an aircraft shall:

(a) Try to re-establish communication by all other means;

(b) If all attempts to re-establish communication with ATC are unsuccessful:

(i) squawk 7600;

(ii) if able, transmit blind at suitable intervals: flight identification, flight level, aircraft position (including the ATS route designator or the track code), and intentions on the frequency in use, and on frequency 121.5 MHz (or on the VHF inter-pilot air to air frequency 123.45 MHz);

(iii) watch for conflicting traffic both visually and by reference to airborne collision avoidance systems or traffic displays (if equipped);

(iv) turn on all aircraft exterior lights (commensurate with appropriate operating limitations);

(v) maintain the last assigned speed and level for a period of 60 minutes following the aircraft’s failure to report its position over a compulsory reporting point (including ADS-C flights), and thereafter adjust speed and level in accordance with the filed flight plan;

(vi) aircraft may elect to initiate strategic lateral offset procedures;

(vii) upon exiting oceanic airspace comply with the loss of COM procedures published for IFR Communication Failure — New Zealand FIR.
4 **IFR COMMUNICATION FAILURE — NEW ZEALAND FIR**

4.1 **ATS Communication Failure**

4.1.1 In the event of communications failure from ATS, the pilot of an aircraft should initiate TIBA procedures as detailed in Section 8 of ENR 1.15.

4.2 **IFR Communication Failure — General**

4.2.1 In the event of an apparent aircraft communication failure, the pilot of the aircraft should adopt the following procedures:

(a) Maintain terrain clearance throughout all procedures.

(b) Switch transponder to code **7600** or communication failure mode in the case of ADS-B equipped aircraft.

(c) Try alternate then secondary published ATS frequencies.

(d) Check aircraft communications equipment.

(e) Listen to ATIS if possible.

(f) Transmit position reports and intentions, assuming the aircraft transmitter is operating, and prefixing all transmissions with “TRANSMITTING BLIND”.

(g) Turn on landing lights, beacons, and strobe lighting.

(h) If a mobile phone is available in the aircraft, attempt to establish telephone communications with:

 (i) Auckland or Ohakea or Wellington or Christchurch Control — or (03) 358 1509;

 (ii) Christchurch Information — (03) 358 1509;

 (iii) the ATC unit you should be communicating with (refer GEN 3.3 for telephone numbers).

(i) If the destination is within an MBZ, proceed to an alternate aerodrome unless the risk in proceeding safely to an alternate aerodrome is clearly greater than continuing, without communications, to the planned destination. (Refer to s13A of the Civil Aviation Act.)
4.3 **IFR Communications Failure — VMC and Certain of Maintaining VMC**

4.3.1 If the pilot of the aircraft is in VMC, or encounters VMC after the failure, and is certain of maintaining VMC:

(a) remain in VMC; and
(b) continue the flight under VFR; and
(c) proceed to a suitable aerodrome and land; and
(d) report arrival by the most expeditious means to the appropriate ATS unit.

4.4 **IFR Communications Failure — IMC or Uncertain of Maintaining VMC**

4.4.1 The initial and subsequent actions of the pilot of an aircraft in IMC or uncertain of being able to maintain VMC will depend on the latest information available on the:

(a) destination aids:
(b) air traffic/airspace procedures; and
(c) meteorological conditions enroute and at the destination.

4.4.2 The provision of ATC to other flights will be based on the assumption that the pilot of an aircraft with communications difficulties will, unless strong reasons dictate otherwise, follow the appropriate procedures specified in paragraphs 4.4.3 to 4.4.11.

4.4.3 The pilot should proceed in accordance with the current flight plan as confirmed by the last acknowledged ATC clearance. ATC will assume that the aircraft will climb to the:

(a) flight planned level; or
(b) last level requested by the pilot and acknowledged by ATC.
Departure — Level Restriction

4.4.4 The pilot of an IFR aircraft that experiences communications failure on departure should:

(a) maintain the last assigned level(s) to the points specified, then climb to maintain the level(s) in the current flight plan; or

(b) if no points are specified, maintain the last assigned level, or minimum flight altitude if higher, for five minutes, then climb to maintain the level(s) specified in the current flight plan.

Departure — Radar Vectors

4.4.5 The pilot of an IFR aircraft that experiences communications failure on departure should:

(a) maintain the last assigned vector for two minutes, and climb to minimum safe altitude if necessary to maintain terrain clearance; and

(b) proceed in accordance with the route specified in the current flight plan.

Arrival

4.4.6 On arrival, the pilot of an IFR aircraft experiencing communications failure should:

(a) track to the destination aid/fix, or if none specified by ATC, the selected aid/fix for the known or forecast RWY; and

(b) if in receipt of an arrival clearance (STAR or equivalent clearance/procedure), track via the clearance; and

(c) commence descent to the initial approach altitude for the approach procedure in accordance with the last acknowledged ATC clearance and then the standard operating procedures (i.e. 3° profile) or flight plan.
At or Within 25 NM from Destination

4.4.7 At or within 25 NM from destination, the pilot of an IFR aircraft experiencing communications failure should:

(a) arrive over the destination/selected aid/fix at the last assigned level at or as near as possible to the expected approach time given by ATC, and commence approach; or

(b) if too high, descend in the aid/fix holding pattern to a level convenient for approach; or

(c) if on initial approach at the time of the communications failure but not cleared for the approach, continue via the procedure and maintain the last assigned level until established on final approach track, then commence approach; or

(d) if too high:

(i) if a holding pattern is established on the final approach track, descend in the holding pattern to a level convenient for approach; or

(ii) if no holding pattern is established, carry out missed approach and position for another approach, if specified diversion allows.

Radar Vectors on Arrival

4.4.8 The pilot of an IFR aircraft that experiences communications failure while being radar vectored on arrival should:

(a) maintain the last assigned vector for two minutes, climbing if necessary to minimum safe altitude to maintain terrain clearance, and proceed to the aid/fix for an approach as specified in 4.4.7; or

(b) if on initial/intermediate approach, maintain the last assigned level until established on final approach track, and then commence approach.

Diversion

4.4.9 If unable to achieve a landing following an approach, the pilot of an IFR aircraft that experiences communications failure should carry out a missed approach.

4.4.10 A second approach may be made if desired, provided a landing can be accomplished within 30 minutes of the expected approach time or the ETA, whichever is the latter. If this approach is unsuccessful, the aircraft must divert to the alternate aerodrome.

4.4.11 The pilot of an IFR aircraft that experiences communications failure while holding because of the closure of the destination aerodrome should hold until the divert time notified to ATC, and then depart for the alternate aerodrome.
5 VFR COMMUNICATION FAILURE — NEW ZEALAND FIR

5.1 ATS Communication Failure

5.1.1 In the event of an ATS communications failure, the pilot of a VFR aircraft in controlled airspace should initiate TIBA procedures as detailed in section 8 of ENR 1.15.

5.2 VFR Communications Failure

5.2.1 In the event of an apparent aircraft communication failure, the pilot of the aircraft should adopt the following procedures:

(a) Maintain terrain clearance throughout all procedures.

(b) Switch transponder to code 7600.

(c) Try alternate then secondary published ATS frequencies for the sector or unit you should be in communication with.

(d) Check aircraft communications equipment.

(e) Listen to ATIS if possible.

(f) Transmit position reports and intentions, assuming the aircraft transmitter is operating, and prefixing all transmissions with “TRANSMITTING BLIND”.

(g) Turn on landing lights, beacons, and strobe lighting.

(h) If a mobile phone is available in the aircraft, attempt to establish telephone communications with:

 (i) Auckland or Ohakea or Wellington or Christchurch Control — (03) 358 1509;

 (ii) Christchurch Information — (03) 358 1509;

 (iii) the ATC unit you should be communicating with (refer GEN 3.3 for tel numbers).

(i) If the destination is within an MBZ, proceed to an alternate aerodrome unless the risk in proceeding safely to an alternate aerodrome is clearly greater than continuing, without communications, to the planned destination. (Refer to s13A of the Civil Aviation Act.)
5.2.2 The pilot of an aircraft operating under VFR should:

(a) not enter controlled airspace, including control zones, unless complying with:

(i) a clearance already received and acknowledged; or

(ii) published COM failure procedures for that aerodrome.

(b) divert to an unattended aerodrome and report arrival to ATS as soon as possible;

(c) if unable to divert to an unattended aerodrome:

(i) continue to operate transponder on code 7600; and

(ii) enter the control zone via a published arrival procedure; or

(iii) approach the aerodrome side-on to the main runway or runway-in-use, and carry out a standard overhead circuit joining procedure; and

(iv) contact ATS as soon as possible after landing.

(d) If an emergency condition exists switch transponder to emergency code 7700.
6 SPEECHLESS TECHNIQUE USING UNMODULATED TRANSMISSIONS

6.1 General

6.1.1 When a pilot is able to communicate only by unmodulated transmissions (e.g. when the transmitter is operative but the microphone is unserviceable), the following technique will be employed by ATS:

(a) when an unmodulated transmission is heard, the ATS operator will request the pilot activate the transmitter three times; and

(b) if the pilot complies ATS will frame questions requiring “YES” or “NO” answers to determine if the aircraft:

(i) can continue visually; or

(ii) can execute an instrument approach, or has reached a nominated position.

6.1.2 This and any other information required will be obtained by requiring the pilot to use the following code:

(a) “YES” or “ROGER” activate transmitter once

(b) “NO” activate transmitter twice

(c) “SAY AGAIN” activate transmitter 3 times

(d) “AT NOMINATED POSITION” activate transmitter 4 times

6.1.3 When it is established that the pilot of the aircraft can receive transmissions, control will be exercised in the normal manner, except that frequency changes will not be requested unless there is no alternative.
7 AERODROME EMERGENCIES

7.1 Aerodrome Emergency Plan

7.1.1 The object of an aerodrome emergency plan is to prepare an aerodrome to cope with an emergency occurring on, or in the vicinity of the aerodrome. The plan sets forth the procedures for coordinating the response of different aerodrome services and those agencies in the surrounding community that could be of assistance in an emergency. Examples of the types of emergencies are:

(a) aircraft malfunctions;
(b) sabotage, including bomb threats;
(c) unlawfully seized aircraft;
(d) dangerous goods occurrences; and
(e) building fires and natural disasters.

7.1.2 An aerodrome emergency plan exists at all aerodromes that have regular air transport services by aircraft with 30 or more passenger seats.

7.2 Procedures to Activate Aerodrome Emergency Services

7.2.1 The ATS unit on the aerodrome is responsible for alerting the emergency services, following a request from a pilot or when an aircraft is considered to be in any of the following emergency phases:

(a) Local Standby Phase: when an aircraft approaching the aerodrome is known, or is suspected, to have developed some defect, but trouble is not such as would normally prevent carrying out a safe landing. Declaration of the LOCAL STANDBY PHASE will bring all aerodrome-based emergency services to a state of readiness but in general, although off-aerodrome components are notified, they will remain at their posts.

(b) Full Emergency Phase: when an aircraft approaching the aerodrome is, or is suspected to be, in such trouble that there is danger of an accident. Declaration of a FULL EMERGENCY PHASE will bring all facilities, both on the aerodrome and in the city or community, such as medical and ambulance services, police and fire services, to a rendezvous point on the aerodrome. It will also alert the hospital to prepare for possible reception of injured, and for road traffic control to be instituted along the route between the city and the aerodrome to clear the way for emergency vehicles.

(c) Aircraft Accident Phase: when an aircraft accident has occurred on or in the vicinity of the airport. Declaration of the AIRCRAFT ACCIDENT PHASE will bring all facilities into immediate action.

7.2.2 When an emergency occurs in flight and adequate communications exist, the pilot is responsible for advising the ATS unit accordingly and for nominating the desired state of readiness of the aerodrome emergency services. If adequate communications with the aircraft do not exist, the ATS unit will assess the situation and bring the aerodrome emergency services to the state of readiness considered appropriate.
8 TRAFFIC INFORMATION BROADCASTS BY AIRCRAFT (TIBA)

8.1 General
8.1.1 TIBA are reports and information transmitted by pilots for the information of pilots of other aircraft in the vicinity following a significant disruption to air traffic or telecommunication services.

8.1.2 TIBA may be used in both the Auckland Oceanic FIR (NZZO) and New Zealand FIR (NZZC).

8.2 Degradation of the ATS system
8.2.1 Pilots will as far as practicable be advised by ATS when the level of available communication is being reduced.

8.2.2 ATS have procedures outlining their response to events that may eventuate in a loss of communication. If the event (such as an evacuation of the ATSC or other ATS facility) is covered by such procedures ATS will, with due regard to their own safety and the nature of the event, issue instructions to facilitate a smooth transition to either:

(a) Alternative communications; or
(b) A TIBA environment.

8.2.3 In the event that the Christchurch ATSC is evacuated, flight information and alerting services provided by Christchurch Information to IFR flights in uncontrolled airspace, and VFR flights, will cease to be provided.

8.3 Introduction and Applicability of TIBA
8.3.1 TIBA will be introduced only when necessary and as a temporary measure. If circumstances permit, introduction of TIBA will be by NOTAM.

8.3.2 Pilots of aircraft should initiate TIBA when there is a complete failure of communication from ATC. The broadcast procedures should be applied in designated airspace where there is:

(a) a need to supplement collision hazard information provided by air traffic services outside controlled airspace; or
(b) a temporary disruption of normal air traffic services.
8.4 VHF RTF Frequency to be used for TIBA

New Zealand FIR (NZZC)

8.4.1 Pilots are to follow frequency instructions issued by ATS. If not instructed by ATS and there is a complete ATS communication failure, refer to the TIBA Frequency Map — North Island (Figure ENR 1.15-1) and TIBA Frequency Map — South Island (Figure ENR 1.15-2).

8.4.2 The purpose of these maps is to allow:
(a) The distribution of relevant traffic to relevant frequencies;
(b) A higher probability of contacting a ground based unit for assistance;
(c) Quick ascertainment by the pilot of the level of autonomy required.

Auckland Oceanic FIR (NZZO)

8.4.3 Pilots are to use frequency 128.95 MHz.

8.5 TIBA Listening Watch

8.5.1 A listening watch should be maintained on the TIBA frequency 10 minutes before entering TIBA airspace until leaving that airspace. For an aircraft taking off from an aerodrome located within the lateral limits of TIBA airspace, listening watch should start as soon as appropriate prior to or after take-off.

8.5.2 Aircraft within the NZZO FIR should also make position reports to an alternative HF station.

8.6 Timing of TIBA

8.6.1 A broadcast should be made:
(a) 10 minutes before entering TIBA airspace or, for a pilot taking off from an aerodrome located within the lateral limits of TIBA airspace, as soon as appropriate prior to or after take-off;
(b) 10 minutes prior to, and crossing any reporting point;
(c) at 10 minute intervals between reporting points;
(d) 10 minutes prior to crossing or joining an ATS route;
(e) where possible 2 to 5 minutes before a change in flight level or altitude;
(f) at the time of a change in flight level or altitude;
(g) when reaching new flight level or altitude; and
(h) at any other time considered necessary by the pilot.
8.7 Content of TIBA

8.7.1 The information to be broadcast in a TIBA is detailed in Table ENR 1.15-1.

8.8 Acknowledgement of TIBA

8.8.1 The broadcasts should not be acknowledged unless a potential collision risk is perceived.

8.9 Changes of Cruising Level Under TIBA

8.9.1 Cruising level changes should not be made within the designated airspace, unless considered necessary by pilots to avoid traffic conflicts, for weather avoidance, or for other valid operational reasons.

8.9.2 When cruising level changes are unavoidable, display all available aircraft lighting that would improve the visual detection of the aircraft while changing levels.

8.10 Collision Avoidance Under TIBA

8.10.1 If, on receipt of a traffic information broadcast from another aircraft, a pilot decides that immediate action is necessary to avoid an imminent collision risk to their aircraft, and this cannot be achieved in accordance with the standard right-of-way provisions, the pilot should:

(a) unless an alternative manoeuvre appears more appropriate, immediately descend 500 ft, or 1000 ft if above FL290 in an area where a vertical separation minimum of 2000 ft is applied;

(b) display all available aircraft lighting that would improve the visual detection of the aircraft;

(c) as soon as possible, reply to the broadcast notifying action being taken on the appropriate TIBA frequency; and

(d) as soon as practicable, resume normal flight level/altitude, notifying the action on the appropriate TIBA frequency.

(e) Response to a system-initiated ACAS Resolution Advisory has precedence over the above instructions.
8.11 Normal Position Reporting Procedures Under TIBA

8.11.1 Normal position reporting procedures should be continued at all times, regardless of any action taken to initiate or acknowledge a TIBA.

<table>
<thead>
<tr>
<th>Content</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal broadcast</td>
<td></td>
</tr>
<tr>
<td>ALL STATIONS (necessary to identify a traffic information broadcast)</td>
<td>ALL STATIONS</td>
</tr>
<tr>
<td>(callsign)</td>
<td>FASTAIR 69</td>
</tr>
<tr>
<td>FLIGHT LEVEL (number)</td>
<td>FLIGHT LEVEL 320</td>
</tr>
<tr>
<td>(or CLIMBING* TO FLIGHT LEVEL/ALTITUDE (number))</td>
<td>SOUTHBOUND</td>
</tr>
<tr>
<td>(direction)</td>
<td>DIRECT AA TO CH VIA NP NS</td>
</tr>
<tr>
<td>(ATS route)</td>
<td></td>
</tr>
<tr>
<td>(or DIRECT FROM (position) TO (position))</td>
<td></td>
</tr>
<tr>
<td>POSITION (position**) AT (time) ESTIMATING</td>
<td>POSITION NP AT 1431</td>
</tr>
<tr>
<td>(next reporting point, or the point of crossing or joining a designated ATS route) AT (time)</td>
<td>ESTIMATING NS AT 1452</td>
</tr>
<tr>
<td>(callsign)</td>
<td>FASTAIR 69</td>
</tr>
<tr>
<td>FLIGHT LEVEL/ALTITUDE (number)</td>
<td>FLIGHT LEVEL 320</td>
</tr>
<tr>
<td>(direction)</td>
<td>SOUTHBOUND</td>
</tr>
</tbody>
</table>

* This applies to an aircraft taking off from an aerodrome located within the lateral limits of the designated airspace.

** For broadcasts made when the aircraft is not near an ATS significant point, the position should be given as accurately as possible and in any case to the nearest 30 minutes of latitude and longitude.
Content

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 – 5 minutes prior to changing altitude/flight level</td>
</tr>
<tr>
<td>ALL STATIONS</td>
</tr>
<tr>
<td>(callsign)</td>
</tr>
<tr>
<td>(direction)</td>
</tr>
<tr>
<td>(ATS route)</td>
</tr>
<tr>
<td>(or DIRECT FROM (position) TO (position))</td>
</tr>
<tr>
<td>LEAVING FLIGHT LEVEL/ALTITUDE (number)</td>
</tr>
<tr>
<td>FOR FLIGHT LEVEL/ALTITUDE (number)</td>
</tr>
<tr>
<td>AT (position and time)</td>
</tr>
</tbody>
</table>

At the time of a change in altitude/flight level

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL STATIONS</td>
</tr>
<tr>
<td>(callsign)</td>
</tr>
<tr>
<td>(direction)</td>
</tr>
<tr>
<td>(ATS route)</td>
</tr>
<tr>
<td>(or DIRECT FROM (position) TO (position))</td>
</tr>
<tr>
<td>LEAVING FLIGHT LEVEL/ALTITUDE (number)</td>
</tr>
<tr>
<td>NOW FOR FLIGHT LEVEL/ALTITUDE (number)</td>
</tr>
</tbody>
</table>

On reaching new altitude/flight level

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL STATIONS</td>
</tr>
<tr>
<td>(callsign)</td>
</tr>
<tr>
<td>MAINTAINING FLIGHT LEVEL/ALTITUDE (number) NOW</td>
</tr>
</tbody>
</table>

© Civil Aviation Authority

Effective: 15 NOV 12
Figure ENR 1.15-1
TIBA Frequency Map — North Island

ENR 1.15 - 19
AIP New Zealand

Effective: 19 NOV 09

© Civil Aviation Authority

Effective: 19 NOV 09
Figure ENR 1.15-2
TIBA Frequency Map — South Island