GEN 3.3 AIR TRAFFIC SERVICES (ATS)

1 RESPONSIBLE SERVICE

1.1 Civil Aviation Authority

1.1.1 The New Zealand ATS authority is the CAA.

Civil Aviation Authority
PO Box 3555
Wellington 6140
NEW ZEALAND

Tel +64 4 560 9400
Fax +64 4 569 2024
AFTN NZHOYAYX

Website www.caa.govt.nz

1.2 ATS Provider

1.2.1 The Airways Corporation of New Zealand (Airways) currently provides all ATS in New Zealand’s area of responsibility.

Airways Corporation of New Zealand Ltd
PO Box 294
Wellington 6140
NEW ZEALAND

Tel (04) 471 1888
Fax (04) 471 0395

1.3 Applicable ICAO Documents

1.3.1 The Standards, Recommended Practices, and, when applicable, the procedures contained in the following ICAO documents apply in New Zealand’s area of responsibility:

(a) Annex 2 Rules of the Air
(b) Annex 11 Air Traffic Services
(c) Doc 4444 Procedures for Air Navigation Services
(d) Doc 7030/4 Regional Supplementary Procedures
(e) Doc 9673 Air Navigation Plan — Asia and Pacific Regions

1.3.2 As noted in GEN 1.7, differences from ICAO Standards, Recommended Practices and procedures are included on the CAA website.
1.4 Services Within Controlled Airspace

OCA, and CTA except terminal CTA

1.4.1 Area control services within OCA, and CTA airspace above 9500 ft are provided H24. Area control services in CTA airspace (except terminal CTA’s) below 9500 ft are provided only when the ATC unit providing area control services is on watch. The unit providing the area control service is as shown on the airspace label on the applicable ARC.

Terminal CTA

1.4.2 Area and approach control services within terminal CTA at Auckland, Wellington and Christchurch are provided H24. Area and approach control services within other terminal CTA are only provided when the respective approach control unit is on watch.

CTR

1.4.3 Approach control services within CTR at Auckland, Wellington and Christchurch are provided H24. Approach control services within other CTR are only provided when the respective approach control and aerodrome control units are both on watch.

1.4.4 Aerodrome control services within CTR at Auckland, Wellington and Christchurch are provided H24. Aerodrome control services within other CTR are only provided when the respective aerodrome control unit is on watch.

CTA and CTR not Operative

1.4.5 When CTA and CTR are not operative, the rules and procedures for Class G airspace apply.

1.4.6 When an ATC unit providing aerodrome and/or approach control closes watch, and a communications link is made available to a remote ATS unit, the remote ATS unit will only provide FIS in the appropriate airspace.

FIS

1.4.7 FIS is provided H24.

1.5 Hours of Service

1.5.1 Hours of service of all ATS units are published by SUP, and may also be amended by NOTAM. Since there is a possibility of change to ATS hours of service, pilots intending to operate within CTA or CTR outside the promulgated hours of service should, prior to entry, confirm with the unit’s ATIS or the Christchurch ATSC that the service is not operating.
1.5.2 Published hours are based on:

(a) The number and availability of ATS staff and their duty time limitations;

(b) The times of operation of regular air transport passenger services by aircraft with an MCTOW in excess of 5700 kg within the airspace(s) the unit has responsibility for;

(c) Special user requirements (e.g. RNZAF, Flying School, Special event);

(d) Services as otherwise determined by the ATS provider.

1.5.3 Operators, when developing schedules:

(a) must ensure that ATS units are able to cover the periods the schedule requires before publishing timetables and updating flight plan information; and

(b) must, for aircraft having a certified seating capacity of more than 30 passengers, contact the aerodrome operator for details of any limitations imposed through CAR Part 139 as they may be restricted to hours less than ATS hours published by SUP.

1.6 Extended service

1.6.1 Extended service is provided by an ATS unit either by opening watch early or closing watch later, and is normally only provided on request for:

(a) disrupted regular air transport by aircraft with an MCTOW in excess of 5700 kg; or

(b) approved special air transport flights by aircraft with an MCTOW in excess of 5700 kg; or

(c) for essential military flights; or

(d) for approved visiting overseas civil air transport or military aircraft.

1.6.2 In all cases of extended service, prior arrangement is required with the Manager of the ATS unit providing aerodrome control at the aerodrome of destination. Where an approach control service is provided by a different unit, the Tower will liaise with the provider of the approach control service, and then advise the level of service to be provided.

1.6.3 Where extended service is agreed outside the published hours it will incur charges as specified in “Airways Standard Terms and Conditions”. Any enquiries about these charges should be directed to Customer Management, Airways New Zealand.

1.6.4 Where an ATS unit is required as a weather alternate outside its published hours, the additional charge will be incurred unless the requirement is cancelled prior to the normal off-watch time.

1.6.5 Any extension of service is based on the availability and duty time requirements of staff. Although all reasonable efforts will be made to accommodate requests for extended service, there will be occasions when extended service cannot be provided by an ATS unit.
2 AREA OF RESPONSIBILITY

2.1 New Zealand FIR
2.1.1 Airways provides ATS throughout the New Zealand FIR (NZZC).

2.2 Auckland Oceanic FIR
2.2.1 Airways provides ATS throughout the Auckland Oceanic FIR (NZZO), except in the Cook, McMurdo, Samoa, and Tonga sectors and at Norfolk Island.

2.2.2 The geographical coordinates of Auckland Oceanic FIR and its various sectors are provided in the Air Navigation Register, which is available on the CAA website.

Cook Sector
2.2.3 Responsibility for the provision of ATS within the Cook Sector of Auckland Oceanic FIR is vested in the Rarotonga ATS unit. Outside the hours of operation of this unit, flight information services and alerting services are provided by Auckland.

2.2.4 Information regarding operations in the Cook Sector is contained in the AIP Cook Islands and depicted on the Auckland Oceanic Enroute chart.

McMurdo Sector
2.2.5 ATS within the McMurdo Sector (when it is activated by NOTAM) is provided by the US Navy facility at McMurdo, to aircraft supporting the US Antarctic programme.

2.2.6 Information regarding operations in the McMurdo Sector is contained in the relevant US aeronautical publications.

Samoa Sector
2.2.7 Responsibility for the provision of ATS within the Samoa Sector of the Auckland Oceanic FIR is vested with Faleolo Tower.

Tonga Sector
2.2.8 Responsibility for the provision of ATS within the Tonga Sector of Auckland Oceanic FIR is vested in Fua’amotu Tower. Outside the hours of operation of this unit, flight information services and alerting services are provided by Auckland.

Norfolk Island
2.2.9 Norfolk Island is contained within the Auckland Oceanic FIR and administered by Australia.

2.2.10 For Norfolk Island MBZ procedures refer to the Australian AIP and use Norfolk Island aerodrome QNH.

Effective: 20 SEP 12
3 TYPES OF SERVICE

3.1 Services Provided

3.1.1 The ATS provided are:

(a) Air Traffic Control (ATC) services, to prevent collisions and maintain an orderly flow of traffic, to:
 (i) IFR flights in Class A, C, and D airspace;
 (ii) VFR flights in Class C and D airspace;
 (iii) aerodrome traffic at controlled aerodromes.

(b) Area Flight Information Services (FIS), to give advice and information useful for the safe and efficient conduct of flights.

(c) Aerodrome Flight Information Services (AFIS) to aircraft operating on or in the vicinity of an aerodrome at which a Flight Service Station is in operation.

(d) Alerting services to all flights that have filed a flight plan and to all flights known to ATS to initiate and/or assist in search and rescue action.

3.2 ATC

3.2.1 ATC comprises:

(a) area control service, provided by:
 (i) an Area Control Centre; or
 (ii) a unit providing approach control service in a CTR or in a CTA of limited extent that is designed primarily for the provision of approach control service.

(b) approach control service, provided by:
 (i) an Area Control Centre; or
 (ii) a TWR when it is necessary or desirable to combine the functions of approach control service with those of the aerodrome control service.

(c) aerodrome control service provided by a TWR.
3.3 **Area Flight Information Service (FIS)**

3.3.1 FIS will be provided whenever practicable to all aircraft that are known to be affected by the information.

3.3.2 FIS is provided as follows:

(a) IFR flights: by the relevant ATS unit.

(b) VFR flights in Class C and D airspace: by the relevant ATC unit.

(c) VFR flights in Class G airspace: by the relevant FIS sector.

3.3.3 In some areas radio guard for IFR flights in Class G airspace may be transferred to an appropriate FIS sector.

3.3.4 For aircraft in flight, flight information is normally confined to information concerning the route being flown up to and including the next attended aerodrome. This includes available information regarding nominated alternate aerodromes and unattended aerodromes enroute at which a landing is planned.

3.3.5 FIS does not diminish the responsibilities normally vested in the pilot of an aircraft, including that for making a final decision regarding any suggested alteration to flight plan.

3.3.6 Where ATC units provide both FIS and ATC service, the provision of ATC service will take precedence over the provision of FIS whenever the provision of ATC service so requires.

3.3.7 FIS will include the provision of available and relevant information concerning:

(a) SIGMET;

(b) weather conditions reported or forecast, at departure, destination, and alternative aerodromes;

(Table GEN 3.3-3 lists aerodrome MET information available in-flight on request from ATS)

(c) changes in the serviceability of navigation aids;

(d) changes in the condition of aerodromes and associated facilities, including information on the state of the aerodrome movement areas when they are affected by snow, ice, or water;

(e) unmanned free balloons;

(f) pre-eruption volcanic activity, volcanic eruptions, and volcanic ash clouds;

(g) release into the atmosphere of radioactive materials or toxic chemicals;

(h) traffic to aircraft likely to be affected; and

(i) other activities likely to affect safety.
3.3.8 FIS provided to VFR flights will also include available information concerning weather conditions along the route of the flight that are likely to make operation under VFR impracticable.

3.3.9 On first contact with ATS, the pilot of an IFR aircraft commencing flight will be provided with flight information, as detailed above, received within the 60 minutes preceding the activation of the plan.

3.3.10 Pilots delaying more than 60 minutes before activating a flight plan must request any necessary additional information.

3.3.11 Flight information will be broadcast on Christchurch Information FISCOM frequencies as follows:

(a) Details of new NOTAM will be broadcast on receipt, and a summary of those NOTAM received in the previous 90 minutes will be broadcast on the hour, subject to workload;

(b) Details of new SIGMET, SPECI on unattended aerodromes, and amended TAF, will be broadcast on receipt, and a summary will be broadcast on the hour, subject to workload.

3.3.12 Pilots may request any information at any time.

Traffic Information

3.3.13 Traffic information is information issued by an ATS unit to alert a pilot to other known or observed air traffic that may be in proximity to the position or intended route of flight, and to help the pilot avoid a collision.

3.3.14 Traffic information will be issued whenever ATS are aware of conflicting aircraft if separation is not required. As some aircraft are not required to be in contact with ATS, this information will at times be incomplete, and ATS cannot assume responsibility for its issuance at all times or for its accuracy.

3.3.15 The provision of traffic information is not intended to relieve the pilot of the responsibility of continued vigilance to see and avoid other aircraft, but is intended to assist visual surveillance.

3.3.16 Traffic information will be provided:

(a) in Class C airspace: between VFR flights, together with traffic avoidance advice on request;

(b) in Class D airspace: between IFR and VFR flights, and between VFR flights, together with traffic avoidance advice on request; and

(c) in Class G airspace, between IFR flights, and where practicable between other flights on request.

(d) between an IFR flight at the lowest usable cruising level in Class C airspace, and a VFR flight in Class D airspace operating at the common airspace level.

3.3.17 Traffic avoidance advice is an enhancement of traffic information, and may specify manoeuvres to assist a pilot in avoiding a collision. A controller may pass traffic avoidance advice proactively.
3.4 Aerodrome Flight Information Service (AFIS)

3.4.1 AFIS provides information useful to pilots for the safe and efficient conduct of their flights. It differs from ATC service in that pilots being provided with AFIS are responsible for assessing a situation based on information passed to them by the FSS and advising their intentions. Other pilots in the vicinity hearing this exchange of RTF messages make their own decisions and, in turn, make known their intentions.

3.4.2 AFIS is provided by a FSS at selected non-controlled aerodromes. In appropriate cases Flight Service Officers may also provide AFIS at controlled aerodromes outside the hours of attendance of ATC.

3.5 ATC Contingency Service — ATC Service Temporarily Not Available

3.5.1 An ATC contingency service is an ATS service that permits services to continue in a controlled manner so that traffic volumes are balanced with available resources. It will be provided when ATC is temporarily not available in any portion of controlled airspace. Activation of contingency procedures will be advised by NOTAM.

3.5.2 Refer to ENR 1.15 for Traffic Information Broadcasts by Aircraft (TIBA) that may be activated when there is a complete failure of communication from ATC.

3.5.3 When an aerodrome control service, or aerodrome and approach control service, is not available at a domestic airport the respective control zone, or control zone and control area, will be designated as a restricted area and restrictions and conditions of use of the airport will be advised by NOTAM.

3.5.4 When an aerodrome control service is not available at either Auckland or Wellington or Christchurch international airport an ATC contingency service will be provided by the approach control unit responsible for that airport. The following procedures will be activated by NOTAM:

(a) Operations Within the Control Zone — General:

(i) operations within the control zone will be restricted to scheduled IFR and VFR emergency operations. Other VFR operations and IFR training flights will not be permitted.

(ii) a clearance to enter the control zone must be obtained from approach control on the frequency specified in the NOTAM.

(iii) only one aircraft (arrival or departure) will be permitted within the control zone at any one time.
(b) **DEPARTING AIRCRAFT:**

(i) aircraft must not enter the designated manoeuvring area until in contact with approach control and issued with traffic information.

(ii) aircraft must advise their location on the aerodrome. Aircraft which need to enter or cross the runway-in-use will not be permitted to enter the manoeuvring area while an aircraft is operating within the control zone or on approach.

(iii) aircraft must hold at the holding position for the designated runway, advise approach control when ready for take-off and hold until clearance to enter controlled airspace is received from approach control.

(c) **ARRIVING AIRCRAFT:**

(i) IFR aircraft will be cleared to enter the control zone on a specified instrument approach procedure.

(ii) VFR (emergency operations) aircraft will be cleared to enter the control zone as and when IFR traffic permits.

(iii) aircraft will be advised of known traffic on the manoeuvring area.

(iv) a clearance for approach will only be granted when the runway is not obstructed.

(v) aircraft must report to approach control when clear of the runway after landing.

(d) the runway-in-use will be selected based on wind information displayed at the approach control position.

(e) information on contingency service will be included in the airport ATIS.

3.5.5 When an approach control service, or both an aerodrome and approach control service, is not available at either Auckland or Wellington or Christchurch international airport an ATC contingency service will be provided and restrictions and conditions of use of the airport will be notified by NOTAM.
4 CO-ORDINATION BETWEEN THE OPERATOR AND ATS

4.1 Operator/ATS Co-ordination

4.1.1 Co-ordination between the operators and ATS is effected in accordance with ICAO Annex 11. When so requested by an international operator, messages (including position reports) received by ATS units and relating to the operation of aircraft for which operational control service is provided by that operator are, so far as is practicable, made available to the operator.

4.1.2 Initial issue instrument flight tests are indicated on ATS flight plans by the insertion of the abbreviation IFT as a status in the Other Information section (see Table ENR 1.10-1), so that ATS units are aware of the status of these flights.

5 MINIMUM FLIGHT ALTITUDES

5.1 Minimum Flight Altitude (MFA)

5.1.1 The minimum heights for VFR flights are prescribed in Subpart D of CAR Part 91, which is available on the CAA website.

5.1.2 The minimum altitudes for IFR are prescribed in Subpart E of CAR Part 91.

5.1.3 The MFA for a route sector will be the higher of the following considerations:

(a) Route Minimum Safe Altitude (MSA).
(b) Minimum Reception Altitude (MRA) for a VOR sector.
(c) Minimum Enroute Altitude (MEA) for an NDB sector.
(d) Volcanic Hazard Zone upper limit.
(e) Danger or Restricted Area upper limit, where an appropriate separation buffer is added — refer to ENR 1.1.

5.1.4 The requirement to comply with the IFR table of cruising levels must then be taken into account to give the MFA.

5.1.5 Where the next route sector MFA requires flight at a higher level, that sector must not be entered below the higher level unless there is a promulgated crossing altitude.

5.1.6 Where aircraft have approved enroute area navigation equipment (e.g. GNSS), compliance with MRA and MEA is not required.
Climb to MFA

5.1.7 To ensure obstacle clearance, aircraft on departure are required to climb to MSA at the promulgated minimum net climb gradient appropriate to the departure procedure being flown. Unless a more restrictive requirement is published in this departure procedure, once above the appropriate MSA, aircraft may continue to climb at a minimum net climb gradient of not less than 3.3% (200 ft/NM) to MFA.

Descent Below MFA

5.1.8 Descent below MFA prior to arrival may only be commenced in the following circumstances:

(a) In accordance with published Enroute descent (Distance) steps, or VORSEC chart steps, or when under radar control; or

(b) Prior to the first Distance or VORSEC step when:

 (i) a positive fix has been established by an unambiguous DME readout for at least 15 seconds, or by use of an off-track VOR or NDB provided the angle of intersection is 45° or greater; and

 (ii) a positive tracking indication has been received by navigation equipment for at least 15 seconds; and

 (iii) during descent aircraft navigation equipment is actively monitored to ensure continuity of guidance.

(c) Descent is restricted to the higher of MSA, or Volcanic Hazard Zone upper limit, or MOA or Danger Area or Restricted Area upper limit (plus separation buffer if required), and based on an optimum descent gradient of 5% (300 ft/NM) to the first Distance or VORSEC step.

(d) Within 10 NM of the aid or fix from which it is intended to conduct an instrument approach, descent is limited to the minimum holding altitude, procedure commencement altitude or MSA, whichever is the higher.

(e) Outside controlled airspace the IFR table of cruising levels applies.

Emergency Descent Below MFA

5.1.9 Where an enroute emergency necessitates a descent below the MEA or MRA, pilots should be aware that the navigational tolerance used to define the MSA may not be valid if utilisation of the primary means of navigation cannot be continued. A decision to continue or divert to another route must be governed by the accuracy of the navigation prior to the emergency.
5.2 MSA

5.2.1 The MSA is found by identifying the controlling obstacle within the total area of the navigation tolerance, based on the type and coverage of the navigation facilities, plus a designated buffer area to allow for navigational error.

5.2.2 MSA for each sector are shown on ENRC and ARC charts. These provide the basis for establishing the minimum cruising altitude appropriate to the direction of flight. The requirements for subsequent sectors should be anticipated by crossing the facility or reporting point at the appropriate altitude relative to the following sector.

MSA Obstacle Clearance

5.2.3 The MSA provides not less than 1000 ft, or in areas designated as mountainous zones, 2000 ft clearance over all obstacles within the enroute obstacle clearance area. Where the controlling obstacle has not been surveyed, a 100 ft obstacle allowance is added.

MSA Application

5.2.4 ENRC and ARC charts show the minimum safe altitude for the route sectors from which the minimum cruising level applicable to the direction of flight may be derived. Published minimum safe altitudes are based upon normal conditions of flight. Where severe weather conditions prevail, or the navigation guidance achieved is inadequate, the pilot is responsible for establishing a satisfactory cruising level appropriate to such conditions.

5.3 Designated Mountainous Zones

5.3.1 In mountainous areas, particularly on the lee side of mountains where adverse weather conditions prevail, obstacle clearance of 1000 ft may be insufficient for safe operation in IMC. Within New Zealand areas have been identified and designated as mountainous zones. In establishing these zones the following factors have been considered:

(a) terrain conducive to increased frontal activity or wind shear;
(b) high winds, funnel winds, lee waves or severe turbulence; and
(c) marked pressure differential.

5.3.2 The areas designated as mountainous zones are detailed in the CAA’s Air Navigation Register, available on the CAA website, and are depicted in Figure GEN 3.3-1 and Figure GEN 3.3-2.
5.3.3 Where a route sector obstacle clearance area contains a mountainous zone, the route minimum safe altitude will provide not less than 2000 ft obstacle clearance in the mountainous zone, or not less than 1000 ft in non-mountainous terrain areas, whichever is the higher. Where STARs, instrument approach, missed approach, departure procedures and SIDs are depicted over mountainous zones, the minimum obstacle clearance provided in the design will be increased by up to 100%.

5.4 MRA and MEA

5.4.1 Where acceptable navigational signal coverage is a requirement for a sector to be flown, MRA or MEA will be promulgated.

5.4.2 The promulgated MRA for a VOR route will ensure adequate signal strength for accurate navigation. Although the warning flag on some low sensitivity VOR receivers may not be visible at altitudes below the published MRA, the altitude or flight level for IFR flights using VOR as the primary means of navigation must be at or above the MRA.

5.4.3 The promulgated MEA for an NDB route will ensure acceptable navigational signal coverage for the sector to be flown. Where MEA is promulgated, IFR flights using NDB as the primary means of navigation must be at or above the MEA.

Navigation Gaps

5.4.4 On some routes with long sectors between navigation aids, minimum navigational signal strength has been determined to be below ICAO Annex 10 recommendations. To avoid increasing MRA/MEA requirements, short navigation gaps are published as a Route Operating Limitation (ROL).

5.4.5 Loss of navigation guidance may not be apparent on some low sensitivity receivers. If guidance is lost, pilots should apply normal DR navigation techniques until the appropriate navigation aid can be used for tracking.

VOR Changeover Points

5.4.6 A changeover point (COP) is the point at which it is appropriate for the pilot of an aircraft navigating on a VOR defined route to transfer the primary navigational reference from the facility behind the aircraft to the appropriate facility ahead of the aircraft.

5.4.7 Where adequate overlapping VOR coverage exists, the COP will be the mid point of the route. In cases where the coverage from one VOR is limited, the COP will be published as close as possible to the mid point of the route. If the changeover is to an NDB, the COP will be at the limit of VOR coverage at minimum safe altitude or a specified MEA/MRA.
5.5 **VOR/DME MRA Sector (VORSEC) Charts**

5.5.1 VORSEC MRA charts, which are included in AD 2, show the higher of the minimum safe altitude or the minimum reception altitude of the nominated navigation aids within sectors that are defined by VOR radials and DME distance arcs. Their purpose is to provide obstacle clearance and good reception information, within a defined area adjacent to an aerodrome, on an area basis additional to that already promulgated for specific routes or by arrival and departure procedures.

5.5.2 ATC may use these charts to route traffic to provide lateral separation. They may be used by aircraft arriving, departing or transiting the area of cover, but not for aircraft holding at an unpublished fix or holding pattern.

5.5.3 Where an aircraft is tracking to or from the VOR via the radial that separates two sectors, the lower sector altitude applies.

5.5.4 Before leaving a sector the aircraft must be:

(a) at or above the altitude appropriate to the next sector, and

(b) when leaving the area covered by one of these charts must be:

 (i) on a promulgated route at or above minimum safe altitude for that route; or

 (ii) under radar control; or

 (iii) at or above 13,000 ft AMSL.

5.6 **25NM Minimum Sector Altitude and Terminal Arrival Altitude (TAA)**

5.6.1 A 25 NM Minimum Sector Altitude is depicted on instrument approach charts, either as a single statement (on earlier PANS-OPS charts) or as a circle (divided into sectors if appropriate) on the new PANS-OPS charts.

5.6.2 The 25 NM Minimum Sector Altitude is the lowest altitude that may be used in IMC by a pilot using ground based navigation facilities or by a pilot using GNSS for primary means navigation.

5.6.3 The TAA depicted on GNSS instrument approach charts is the lowest altitude(s) that may be used by a pilot when within the applicable sector relating to the fix to which the aircraft is tracking. The TAA may be centred on an IAF or an IF and extends to a distance of 25 NM from the fix.

5.6.4 Where an aircraft is tracking along the boundary line between adjacent sectors, the lower sector altitude applies.

5.7 **Area Minimum Altitude (AMA)**

5.7.1 AMA values are shown on Area charts within 1 degree quadrilaterals formed by the parallels of latitude and the meridians of longitude, and Enroute charts within 2 degree quadrilaterals. The AMA within each quadrilateral also covers a buffer 5 NM outside the quadrilateral. The AMA provides a minimum safe level for IFR flight within that quadrilateral.
6 **ATS Units Address List**

6.1 **Address List and Contact Information**

6.1.1 Contact information for the National Briefing Office is provided in Table GEN 3.3-1.

<table>
<thead>
<tr>
<th>Table GEN 3.3-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Briefing Office</td>
</tr>
<tr>
<td>Operator for ATIS, NOTAM, or to file or cancel flight plans</td>
</tr>
<tr>
<td>To fax flight plans</td>
</tr>
</tbody>
</table>

6.1.2 An ATS units address list is provided in Table GEN 3.3-2.

<table>
<thead>
<tr>
<th>Table GEN 3.3-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATS Unit Address List</td>
</tr>
<tr>
<td>Unit name</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Unit name</td>
</tr>
<tr>
<td>----------------------------</td>
</tr>
<tr>
<td>Hamilton Control Tower</td>
</tr>
<tr>
<td>Invercargill Control Tower</td>
</tr>
<tr>
<td>Milford Sound FSS</td>
</tr>
<tr>
<td>Napier Control Tower</td>
</tr>
<tr>
<td>Nelson Control Tower</td>
</tr>
<tr>
<td>New Plymouth Control Tower</td>
</tr>
<tr>
<td>Ohakea Control Tower</td>
</tr>
<tr>
<td>Palmerston North Control Tower</td>
</tr>
<tr>
<td>Paraparaumu FSS</td>
</tr>
<tr>
<td>Queenstown Control Tower</td>
</tr>
<tr>
<td>Rotorua Control Tower</td>
</tr>
<tr>
<td>Tauranga Control Tower</td>
</tr>
<tr>
<td>Wellington Control Tower</td>
</tr>
<tr>
<td>Whenuapai Control Tower</td>
</tr>
<tr>
<td>Woodbourne Control Tower</td>
</tr>
</tbody>
</table>
Figure GEN 3.3-1
Mountainous Zones — North Island
Figure GEN 3.3-2
Mountainous Zones — South Island

SOUTH ISLAND RANGES

AKAROA

S 40°

S 45°

S 170°

Designated Mountainous Zones
Table GEN 3.3-3

Aerodrome Meteorological Information
Available In-Flight On Request from ATS

<table>
<thead>
<tr>
<th>Aerodrome</th>
<th>ATIS¹</th>
<th>METAR/SPECI¹</th>
<th>METAR/AUTO²</th>
<th>TAF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auckland</td>
<td>AVBL</td>
<td>AVBL</td>
<td>AVBL</td>
<td></td>
</tr>
<tr>
<td>Chatham Is</td>
<td>AVBL</td>
<td>AVBL</td>
<td>AVBL</td>
<td></td>
</tr>
<tr>
<td>Christchurch</td>
<td>AVBL</td>
<td>AVBL</td>
<td>AVBL</td>
<td></td>
</tr>
<tr>
<td>Dunedin</td>
<td>AVBL</td>
<td>AVBL</td>
<td>AVBL</td>
<td></td>
</tr>
<tr>
<td>Gisborne</td>
<td>AVBL</td>
<td>AVBL</td>
<td>AVBL</td>
<td></td>
</tr>
<tr>
<td>Hamilton</td>
<td>AVBL</td>
<td>AVBL</td>
<td>AVBL</td>
<td></td>
</tr>
<tr>
<td>Hokitika</td>
<td>AVBL</td>
<td>AVBL</td>
<td>AVBL</td>
<td></td>
</tr>
<tr>
<td>Invercargill</td>
<td>AVBL</td>
<td>AVBL</td>
<td>AVBL</td>
<td></td>
</tr>
<tr>
<td>Kerikeri/Bay of Islands</td>
<td>AVBL</td>
<td>AVBL</td>
<td>AVBL</td>
<td></td>
</tr>
<tr>
<td>Masterton</td>
<td>AVBL</td>
<td>AVBL</td>
<td>AVBL</td>
<td></td>
</tr>
<tr>
<td>Milford Sound</td>
<td>AVBL</td>
<td>AVBL</td>
<td>AVBL</td>
<td></td>
</tr>
<tr>
<td>Napier</td>
<td>AVBL</td>
<td>AVBL</td>
<td>AVBL</td>
<td></td>
</tr>
<tr>
<td>Nelson</td>
<td>AVBL</td>
<td>AVBL</td>
<td>AVBL</td>
<td></td>
</tr>
<tr>
<td>New Plymouth</td>
<td>AVBL</td>
<td>AVBL</td>
<td>AVBL</td>
<td></td>
</tr>
<tr>
<td>Oamaru</td>
<td>AVBL</td>
<td>AVBL</td>
<td>AVBL</td>
<td></td>
</tr>
<tr>
<td>Ohakea</td>
<td>AVBL</td>
<td>AVBL</td>
<td>AVBL</td>
<td></td>
</tr>
<tr>
<td>Palmerston North</td>
<td>AVBL</td>
<td>AVBL</td>
<td>AVBL</td>
<td></td>
</tr>
<tr>
<td>Paraparaumu</td>
<td>AVBL</td>
<td>AVBL</td>
<td>AVBL</td>
<td></td>
</tr>
<tr>
<td>Queenstown</td>
<td>AVBL</td>
<td>AVBL</td>
<td>AVBL</td>
<td></td>
</tr>
<tr>
<td>Rotorua</td>
<td>AVBL</td>
<td>AVBL</td>
<td>AVBL</td>
<td></td>
</tr>
<tr>
<td>Taupo</td>
<td>AVBL</td>
<td>AVBL</td>
<td>AVBL</td>
<td></td>
</tr>
<tr>
<td>Tauranga</td>
<td>AVBL</td>
<td>AVBL</td>
<td>AVBL</td>
<td></td>
</tr>
<tr>
<td>Te Anau/Manapouri</td>
<td>AVBL</td>
<td>AVBL</td>
<td>AVBL</td>
<td></td>
</tr>
<tr>
<td>Timaru</td>
<td>AVBL</td>
<td>AVBL</td>
<td>AVBL</td>
<td></td>
</tr>
<tr>
<td>Wanaka</td>
<td>AVBL</td>
<td>AVBL</td>
<td>AVBL</td>
<td></td>
</tr>
<tr>
<td>Wellington</td>
<td>AVBL</td>
<td>AVBL</td>
<td>AVBL</td>
<td></td>
</tr>
<tr>
<td>Westport</td>
<td>AVBL</td>
<td>AVBL</td>
<td>AVBL</td>
<td></td>
</tr>
<tr>
<td>Whakatane</td>
<td>AVBL</td>
<td>AVBL</td>
<td>AVBL</td>
<td></td>
</tr>
<tr>
<td>Whanganui</td>
<td>AVBL</td>
<td>AVBL</td>
<td>AVBL</td>
<td></td>
</tr>
<tr>
<td>Whangarei</td>
<td>AVBL</td>
<td>AVBL</td>
<td>AVBL</td>
<td></td>
</tr>
<tr>
<td>Whenuapai</td>
<td>AVBL</td>
<td>AVBL</td>
<td>AVBL</td>
<td></td>
</tr>
<tr>
<td>Woodbourne</td>
<td>AVBL</td>
<td>AVBL</td>
<td>AVBL</td>
<td></td>
</tr>
</tbody>
</table>

Effective: 26 MAY 16
Notes:

1. Available only during hours of service of ATS unit.

2. METAR AUTO includes the surface wind, visibility (but with no directional visibility variations, runway visual range (Auckland and Christchurch aerodromes only), present weather, cloud, temperature, dew point and QNH. Users should be aware that the observations of visibility and cloud give conditions at and above the sensors and may not be representative of conditions over other parts of the aerodrome or within 8 km radius of the aerodrome reference point. Lightning data from an independent lightning detection network will be added to METAR AUTO to indicate the presence of thunderstorms (TS), recent (RE) weather will also be included as appropriate.

METAR AUTO will not include “vicinity” (VC) present weather, except for thunderstorms in the vicinity (VCTS), which will be included in the report.

METAR AUTO reports are provided at 30-minute intervals (on the hour and half hour). SPECI AUTO reports are not provided.